$\xrightarrow[\text { PARADIGM }]{\xrightarrow{\text { ANALOG }}}$

Analog Computer Applications

The Aizawn attractor

This application note implements one of the most beautiful chaotic attractors, the so-called AIzawa attractor. ${ }^{1}$ The underlying system consists of three coupled differential equations,

$$
\begin{aligned}
& \dot{x}=x(z-\beta)-\delta y, \\
& \dot{y}=\delta x+y(z-\beta) \text { and } \\
& \dot{z}=\gamma+\alpha z-\frac{z^{3}}{3}+\varepsilon z x^{3}
\end{aligned}
$$

with the parameters $\alpha=0.095, \beta=0.7, \gamma=0.65,{ }^{2} \delta=3.5$, and $\varepsilon=0.1$. A thorough numerical study of the behavior of this particular system can be found in [LANGFORD 1984].

Scaling these equations to ensure that no variable exceeds the machine units of ± 1 is pretty straight-forward: The scaling factors corresponding to x, y, and z are $\lambda_{x}=\frac{1}{3}, \lambda_{y}=\frac{1}{4}$, and $\lambda_{z}=\frac{1}{2}$. The value $z-\beta$ is scaled by $\frac{2}{5}$.

The resulting computer setup is a bit convoluted as shown in figure 1. All in all, three integrators, four summers, seven multipliers, and eleven coefficient potentiometers are required for this program.

Figure 2 shows the x, z phase space plot of the AIzAWA attractor - an exceptionally beautiful structure. To achieve this, two of the parameters, resulting from the scaling, marked by $*$ and $* *$ in figure 1 , were varied a bit to achieve a "nicer" picture. The correct values for these are 0.95 and 0.27 respectively.

[^0]

Figure 1: Program for the AIzAWA attractor

Dr. Bernd Ulmann, Issue \#17 (2), 15-DEC-2018

Analog Computer Applications

Figure 2: The x, z phase space plot of the Aizawa attractor

Analog Computer Applications

References

[Cope 2017] Greg Cope, The Aizawa Attractor, http://www. algosome.com/articles/aizawa-attractor-chaos.html, retrieved 15.12.2018
[Langford 1984] William Finlay Langford, "Numerical Studies of Torus Bifurcations", in International Series of Numerical Mathematics, Vol. 70, 1984 Birkhäuser Verlag Basel, pp. 285-295

[^0]: ${ }^{1}$ See [Cope 2017]
 ${ }^{2}$ The original system has $\gamma=0.6$ but 0.65 was determined as a better value.

