Analog Computer Applications

Ballistic trajectory

The following example computes the two-dimensional ballistic trajectory of a projectile fired from a cannon, taking the velocity dependent drag slowing the projectile down into account. ${ }^{1}$ This drag causes the trajectory to deviate from a simple symmetric parabola as it will be steeper on its trailing half than on its leading half. The drag $\delta(v)$ is assumed to be of the general form

$$
\delta(v)=r v^{2}=r\left(\sqrt{\dot{x}^{2}+\dot{y}^{2}}\right)^{2}
$$

which is a bit oversimplified but will suffice for the following. The general equations of motion of the projectile in this two-dimensional problem are

$$
\begin{align*}
& \ddot{x}=-\frac{\delta(v)}{m} \cos (\varphi) \text { and } \tag{1}\\
& \ddot{y}=-g-\frac{\delta(v)}{m} \sin (\varphi) \tag{2}
\end{align*}
$$

with g representing the acceleration of gravity, v denoting the projectile's velocity, and m being its mass. Obviously, it is

$$
\begin{aligned}
\cos (\varphi) & =\frac{\dot{x}}{v} \text { and } \\
\sin (\varphi) & =\frac{\dot{y}}{v} .
\end{aligned}
$$

Setting the mass $m:=1$ and rearranging (1) and (2), we get the

[^0]Dr. Bernd Ulmann, Issue \#9, 14-AUG-2017

Analog Computer Applications

following set of differential equations:

$$
\begin{aligned}
& \ddot{x}=-\frac{\delta(v)}{v} \dot{x} \\
& \ddot{y}=-g-\frac{\delta(v)}{v} \dot{y}
\end{aligned}
$$

The computer setup resulting from these equations is shown in figures 1 and 2. The upper and lower halves of the circuit are symmetric except for the input for the gravitational acceleration to the lower left integrator yielding \dot{y}. The velocities \dot{x} and \dot{y} are fed to two multipliers yielding their respectives squares which are then summed and square rooted to get v as we have $\delta(v) / v=r v$.

The parameters α_{1} and α_{2} are scaling parameters that are set in order to get a suitably scaled picture on an oscilloscope operated in $x y$-mode. Table 1 shows the parameter set yielding the result shown in figure 3. The initial conditions satisfy

$$
\begin{aligned}
\dot{x}_{0} & =\cos \left(\varphi_{0}\right) \text { and } \\
\dot{y}_{0} & =\sin \left(\varphi_{0}\right)
\end{aligned}
$$

with φ denoting the elevation of the cannon. In this example $\varphi_{0}=60^{\circ}$ has been chosen.

References

[Korn, 1966] Granino A. Korn, Random-Process Simulation and Measurement, McGraw-Hill Book Company, 1966

Analog Computer Applications

Figure 1: Computer setup for the simulation of a ballistic trajectory

Parameter	Value
\dot{x}_{0}	0.5
x_{0}	1
\dot{y}_{0}	0.86
y_{0}	1
g	0.72
r	1
α_{1}	0.34
α_{2}	0.55

Table 1: Parameter settings for the ballistic trajectory problem

Analog Computer Applications

Figure 2: Setup of the ballistic trajectory problem on an Analog Paradigm Model-1 analog computer

Figure 3: Ballistic trajectory

Dr. Bernd Ulmann, Issue \#9, 14-AUG-2017

[^0]: ${ }^{1}$ Cf. [Korn, 1966, pp. 2-7 ff.].

