Mode-Locked Gaussian Laser Power Pulse Simulation

1 Introduction

This application simulates a mode-locked Gaussian laser power pulse without the use of an antilogarithmic computing element.

The first task is to produce a differential equation from a typical Gaussian function. This 'reverse engineering' approach is discussed in detail below.

2 Mathematical modeling

Assume a time-shifted mode-locked Gaussian laser power pulse:

$$P = P_{max}e^{(-4ln(2)((t - \tau_s)/\tau_p)^2)}$$
(1)

where

$$\begin{split} P &= \text{laser power} \\ P_{\text{max}} &= \text{maximum (or peak) laser power} \\ t &= \text{time} \\ \tau_s &= \text{time shift} \\ \tau_p &= \text{FWHM (Full Width at Half Maximum)} \end{split}$$

Letting $\gamma = 4\ln(2)/\tau_p^2$,

$$P = P_{max}e^{(-\gamma(t - \tau_s)^2)}$$

Differentiating P with respect to t,

$$\dot{P} = -2\gamma(t - t')P_{max}e^{(-\gamma(t - \tau_s)^2)}$$
$$\dot{P} = -2\gamma(t - \tau_s)$$

$$\dot{P} + 2\gamma(t - \tau_s)P = 0$$
 with $P(0) = P_0$ (2)

where

 $\dot{P} = dP/dt$ $\tau_s = time \ shift$ $P_0 = laser \ power \ at \ initiation \ of \ program \ run$

Equation (2) is the desired differential equation for which the analog computer is well suited to solve using a few operational amplifiers and an analog multiplier.

Letting $e = 2\gamma(t - \tau_s)$, (3)

$$\dot{P} + eP = 0$$
 with $P(0) = P_0$ (4)

Generating e: The operational amplifier (op-amp) integrator to the rescue!

For an op-amp integrator, with a constant input voltage,

$$V_{out} = -(V_{in}/\tau)t + V_0 = -(V_{in}/\tau)(t - (V_{in}/V_0)\tau)$$

where

 V_{in} = input voltage V_0 = initial voltage τ = RC (time constant)

Letting $V_{out} = e$, $V_{in} = \alpha$, and $V_0 = \beta$,

$$e = -(\alpha/\tau)(t - (\beta/\alpha)\tau$$
(5)

Comparing (5) to (3),

 $\alpha = 2\gamma\tau = 8ln(2)\tau/\tau_p{}^2 \text{ and } \beta = \alpha\tau_s/\tau = 2\gamma\tau\tau_s/\tau = 2\gamma\tau_s = 8ln(2)\tau_s/\tau_p{}^2$

Letting $P_0 = 0.100$, $\tau = 1.760$, $\tau_p = 8.331$, and $\tau_s = 7.500$,

 $\alpha = 0.141$ and $\beta = 0.599$

3 Computer setup

Figure 1: Computer setup for mode-locked Gaussian laser power pulse simulation

Parameter	Value
α	0.141
β	0.599
Po	0.100

Table 1: Parameter settings for mode-locked Gaussian laser power pulse simulation

4 Result

Figure 2: Mode-locked Gaussian laser power pulse*

*For this application note, the display was produced during a single run by a differential equation analog computer prototype using discrete components with tolerances between 1% and 10%.

Michael Cimorosi, Issue #2, Revised 16-SEP-2020