Analog Computer Applications

Application Note \#5
Undergraduate Engineering Physics STEM Project

Newton's Law of Heating Simulation
 (Part 1: Constant Ambient Temperature)

1 Introduction

This simulation concerns itself with the temperature of a glass of iced tea, initially at $1^{\circ} \mathrm{C}$, after it is placed in a refrigerator with a constant interior ambient temperature of $6^{\circ} \mathrm{C}$. For this simulation, the object's temperature is assumed to obey Newton's Law of Heating.

2 Mathematical modeling

Starting with Newton's Law of Heating,

$$
\begin{equation*}
\mathrm{dT} / \mathrm{dt}=1 / 2 / \min \left(6^{\circ} \mathrm{C}-\mathrm{T}\right) \text { with } \mathrm{T}(0)=1^{\circ} \mathrm{C} \tag{1}
\end{equation*}
$$

(Elected to use simple fractions instead of dealing with decimals.)
Replacing dT/dt with T and omitting units for clarity,

$$
\begin{equation*}
\dot{\mathrm{T}}=1 / 2(6-\mathrm{T}) \text { with } \mathrm{T}(0)=1 \tag{2}
\end{equation*}
$$

Using differential equation techniques,

$$
\begin{equation*}
T=-5 e^{\wedge}(-t / 2)+6 \tag{3}
\end{equation*}
$$

This analytical solution will be compared with the analog computation solution on page 3.

3 Computer setup

Figure 1: Computer setup for Newton's Law of Heating Simulation ($\mathrm{T}_{\mathrm{A}}=$ constant)

4 Results

Figure 2: Temperature vs time simulation (constant ambient temperature)*
$\left.\begin{array}{|l|l|l|}\hline \text { Analog Computation } & \text { Analog Computation } & \text { Analytical } \\ \mathrm{t}(\mathrm{s}) & \mathrm{T}\left({ }^{\circ} \mathrm{C}\right)\end{array} \mathrm{T}^{\circ} \mathrm{C}\right)$

Table 1: Solution Comparison: Analog Computation vs Analytical

Newton's Law of Heating Simulation
 (Part 2: Linearly Decreasing Ambient Temperature)

1 Introduction

This part of the simulation concerns itself with the temperature of a glass of iced tea, initially at $1^{\circ} \mathrm{C}$, after it is placed in a refrigerator with an interior ambient temperature initially at $6^{\circ} \mathrm{C}$ but then begins to decrease linearly. For this simulation, the object's temperature is assumed to obey Newton's Law of Heating.

2 Mathematical modeling

Starting with Newton's Law of Heating and $\mathrm{T}_{\mathrm{A}}=\left(-1 / 3^{\circ} \mathrm{C} / \mathrm{min} \mathrm{t}+6^{\circ} \mathrm{C}\right)$,

$$
\begin{equation*}
\mathrm{dT} / \mathrm{dt}=1 / 2 / \min \left(-1 / 3^{\circ} \mathrm{C} / \min \mathrm{t}+6^{\circ} \mathrm{C}-\mathrm{T}\right) \text { with } \mathrm{T}(0)=1^{\circ} \mathrm{C} \tag{1}
\end{equation*}
$$

(Elected to use simple fractions instead of dealing with decimals.)
Replacing dT/dt with $\dot{\mathrm{T}}$ and omitting units for clarity,

$$
\begin{equation*}
\dot{\mathrm{T}}=1 / 2(-\mathrm{t} / 3+6-\mathrm{T}) \text { with } \mathrm{T}(0)=1 \tag{2}
\end{equation*}
$$

Rewriting (2),

$$
\begin{equation*}
\dot{\mathrm{T}}+\mathrm{T} / 2=-\mathrm{t} / 6+3 \tag{3}
\end{equation*}
$$

First, seek a complementary solution (T_{c}) by setting the right-hand side of (3) equal to zero.

$$
\begin{gathered}
\dot{\mathrm{T}}_{\mathrm{c}}+\mathrm{T}_{\mathrm{c}} / 2=0 \\
\dot{\mathrm{~T}}_{\mathrm{c}}=-\mathrm{T}_{\mathrm{c}} / 2
\end{gathered}
$$

Integrating by inspection,

$$
\ln \left(T_{c}\right)=-t / 2+\text { constant }
$$

Setting the constant $=\ln (\alpha)$,

$$
\begin{align*}
& \ln \left(\mathrm{T}_{\mathrm{c}} / \alpha\right)=-\mathrm{t} / 2 \\
& \mathrm{~T}_{\mathrm{c}}=\alpha \mathrm{e}^{\wedge}(-\mathrm{t} / 2) \tag{4}
\end{align*}
$$

Next, seek a particular solution $\left(T_{p}\right)$ by selecting a trial function.
Assuming $\mathrm{T}_{\mathrm{p}}=\beta \mathrm{t}+\gamma$

$$
\begin{equation*}
\dot{\mathrm{T}}_{\mathrm{p}}=\beta \tag{5}
\end{equation*}
$$

Substituting the expressions for (4) and (5) into (3),

$$
\begin{gather*}
\beta+(\beta t+\gamma) / 2=-t / 6+3 \\
\beta / 2 t+\beta+\gamma / 2=-t / 6+3 \tag{6}
\end{gather*}
$$

Comparing coefficients of like terms on each side of (6),

$$
\begin{gathered}
\beta / 2=-1 / 6 \\
\beta=-1 / 3 \\
\text { and } \\
\beta+\gamma / 2=3
\end{gathered}
$$

$$
\begin{gathered}
-1 / 3+\gamma / 2=3 \\
\gamma=20 / 3
\end{gathered}
$$

Thus,

$$
T_{p}=-t / 3+20 / 3
$$

and

$$
\mathrm{T}=\mathrm{T}_{\mathrm{c}}+\mathrm{T}_{\mathrm{p}}=\alpha \mathrm{e}^{\wedge}(-\mathrm{t} / 2)-\mathrm{t} / 3+20 / 3
$$

Invoking the initial condition $\mathrm{T}(0)=1$,

$$
\begin{gathered}
1=\alpha+20 / 3 \\
\alpha=-17 / 3
\end{gathered}
$$

yielding

$$
\begin{equation*}
T=-17 / 3 e^{\wedge}(-t / 2)-t / 3+20 / 3 \tag{6}
\end{equation*}
$$

This analytical solution will be compared with the analog computation solution on page 7 .

Differentiating (3) and setting it equal to zero will yield $\mathrm{T}_{\text {max }}$.

$$
\begin{aligned}
& \dot{\mathrm{T}}=17 / 6 \mathrm{e}^{\wedge}(-\mathrm{t} / 2)-1 / 3 \\
& 0=17 / 6 \mathrm{e}^{\wedge}\left(-\mathrm{t}^{\prime} / 2\right)-1 / 3
\end{aligned}
$$

Using algebra,

$$
\begin{gathered}
\mathrm{t}^{\prime}=-2 \ln (2 / 17) \cong 4.28 \\
\text { and }
\end{gathered}
$$

$$
\mathrm{T}_{\max } \cong-17 / 3 \mathrm{e}^{\wedge}(-4.28 / 2)-4.28 / 3+20 / 3 \cong 4.57
$$

3 Ambient temperature generator computer setup

Figure 1: Computer setup to generate decreasing ambient temperature

4 Final computer setup

Figure 2: Computer setup for Newton's Law of Heating Simulation

5 Results

Figure 3: Temperature vs time simulation (decreasing ambient temperature)*

Analog Computation	Analog Computation	Analytical
$\mathrm{t}(\mathrm{s})$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$
Oscilloscope	Oscilloscope Estimate	Calculator
Scale: 0.5 min per small division	Scale: $0.4^{\circ} \mathrm{C}$ per small division	
0.00	1.0	1.0
$4.28=\mathrm{t}^{\prime}$	4.8	$4.6=\mathrm{T}_{\max }$
10	3.6	3.3

Table 1: Solution Comparison: Analog Computation vs Analytical
*For this application note, each display was produced during a single run by a differential equation analog computer prototype using discrete components with tolerances between 1% and 10%.

Michael Cimorosi, Issue \#5, 7-DEC-2020

