Analog Computer Applications
 Application Note \#6
 Undergraduate Engineering Physics Space-Themed STEM Project

Power Surfing on Ligeia Mare, a Large Hydrocarbon Sea on Titan (A Simulation)

Figure 1: Ligeia Mare (https://en.wikipedia.org/wiki/Ligeia_Mare)

1 Introduction

This application note simulates the speed of a small sea-going drone that is power surfing across Ligeia Mare (from Greek mythology). To start, it is assumed that the drone is moving with a uniform speed of three meters per second. After its electric engine is cut off, the drone begins coasting to a halt under the influence of atmospheric drag (assumed to be quadratic) and surface friction. The drone's speed and the time it takes for it to come to a halt will be determined and displayed in figure 3 .

In section 2, a mathematical model will be developed for the drone's speed as a function of time.

For this application, an analytical solution, a numerical method solution, and an analog computation solution will be determined and then compared in table 1.

2 Mathematical modeling

Starting with Newton's second law of motion,

$$
\mathrm{ma}=\mathrm{F}_{\text {net }}=-\mathrm{drag}-\text { friction }=-\mathrm{kv}^{2}-\mu \mathrm{mg}
$$

Assuming $\mathrm{m}=1 \mathrm{~kg}, \mathrm{k}=0.1 \mathrm{~kg} / \mathrm{m}, \mathrm{g}=1.352 \mathrm{~m} / \mathrm{s}^{2}, \mu=0.125$ (just a guess), $\mathrm{v}(0)=3 \mathrm{~m} / \mathrm{s}$, and neglecting units for simplicity,

$$
a=-0.1 v^{2}-0.169 \text { with } v(0)=3
$$

Since $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$,

$$
\begin{equation*}
\mathrm{dv} / \mathrm{dt}=-0.1 \mathrm{v}^{2}-0.169 \text { with } \mathrm{v}(0)=3 \tag{1}
\end{equation*}
$$

Equation (1) is separable and integrable. Additional mathematical details provided upon request: mcimorosi@desu.edu

$$
\begin{gather*}
\mathrm{dv} / \mathrm{dt}=-0.1\left(\mathrm{v}^{2}+1.69\right) \\
\mathrm{dv} / \mathrm{dt}=-0.1\left(\mathrm{v}^{2}+1.3^{2}\right) \\
\int_{3}^{\mathrm{v}} \frac{\mathrm{dv}}{\mathrm{v}^{2}+1.3^{2}}=-0.1 \int_{0}^{\mathrm{t}} \mathrm{dt} \\
{\left[\tan ^{-1}(\mathrm{v} / 1.3)-\tan ^{-1}(3 / 1.3)\right] / 1.3=-0.1 \mathrm{t}} \tag{2}\\
\mathrm{v}=1.3 \tan \left[\tan ^{-1}(3 / 1.3)-0.13 \mathrm{t}\right] \tag{3}
\end{gather*}
$$

Setting $\mathrm{v}=0 \mathrm{~m} / \mathrm{s}$ in (2) to determine the time required to come to a halt,

$$
\begin{equation*}
t_{\text {halt }}=\tan ^{-1}(3 / 1.3) / 0.13=8.94 \text { seconds } \tag{4}
\end{equation*}
$$

3 Computer setup

Figure 2: Computer setup for coasting across the surface of a Ligeia Mare
Heun's Numerical Method
(hand-held programmable calculator)

PROGRAM:TITANV

:ClrHome:ClrDraw:Fix 2
:"DV/DT=-0.1($\left.\mathrm{V}^{2}+1.69\right) "$
:"INITIAL CONDITION"
$: 0 \rightarrow \mathrm{~T}: 3 \rightarrow \mathrm{~V}$
:"STEP SIZE":0.05 \rightarrow H
:Lbl 1
:If V<-0.05:Then
:Goto 2:Else
:Disp \{T,V\}
$:-0.1\left(\mathrm{~V}^{2}+1.3^{2}\right) \rightarrow \mathrm{F}$
$: T+H \rightarrow T$
:V+FH \rightarrow W
$:-0.1\left(W^{2}+1.3^{2}\right) \rightarrow S$
$:(\mathrm{F}+\mathrm{S}) / 2 \rightarrow \mathrm{~A}$
$: V+A H \rightarrow V$
:Pause:Goto1
:Lbl2:End

4 Results

$\mathrm{t}(\mathrm{s})$	Analog Computation Solution $\mathrm{v}(\mathrm{m} / \mathrm{s})$	Analytical Solution $\mathrm{v}(\mathrm{m} / \mathrm{s})$	Heun's Numerical Method Solution H = 0.05 s $\mathrm{v}(\mathrm{m} / \mathrm{s})$
0.00	3.00	3.00	3.00
2.50	1.50	1.44	1.44
5.00	0.80	0.73	0.73
7.50	0.30	0.25	0.25
9.50	0.00		
8.94		0.00	
8.95			0.00

Table 1: Solution Comparisons

Figure 3: Drone speed as a function of time*
*For this application note, the display was produced during a single run by a differential equation analog computer prototype using discrete components with tolerances between 1% and 10%.

