Home-Constructed, Building Block Op-Amp Circuits for Analog Computers

Inverting Integrator

Introduction

Assuming the reader to be familiar with basic DC electronic theory, breadboards, ideal opamp parameters, and a bit of calculus, the mission of this project is show him/her a circuit that performs integration! Below, is my home-constructed inverting integrator circuit. However, don't just take my word for it. Using this document as a guide, construct and test your own inverting integrator and see for yourself! Doing builds understanding! ©) At the end of this document is a list of components and supplies used for this building block.

$$
\begin{array}{|cc|}
\begin{array}{|cc|}
\hline 1 & 8 \\
2 & 7 \\
3 & 6 \\
4 & 5 \\
\hline \mu \mathrm{~A} 741 \\
\text { Op-amp } \\
\text { pin } \\
\text { diagram }
\end{array} \\
\hline
\end{array}
$$

Pins 1, 5, and 8 not used.

Figure 1: Inverting integrator diagram

Figure 2: Photograph of inverting integrator breadboard layout
To see how this circuit integrates, I begin with a set of general current-voltage equations:

$$
\mathrm{I}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}} / \mathrm{R},
$$

where I_{R} is the current passing through the resistor.

$$
\begin{gathered}
\text { Also, } \\
\mathrm{I}_{\mathrm{C}}=\mathrm{dQ}_{\mathrm{C}} / \mathrm{dt}=\mathrm{CdV}_{\mathrm{C}} / \mathrm{dt}
\end{gathered}
$$

where Ic is the rate at which charge is deposited/removed from the capacitor. It is NOT charge passing through the capacitor! That would be a bad thing! $)$

Now, for a bit of op-amp circuit mathematics:
To start,

$$
\mathrm{V}_{+}=\mathrm{V}_{-}=0(\text { virtual ground at pin } 2)
$$

Determine $\mathrm{I}_{\mathrm{R} 1}$:

$$
\begin{gathered}
I_{\mathrm{R} 1}=\left(V_{\text {in }}-0\right) / R_{1} \\
I_{R 1}=V_{\text {in }} / R_{1}
\end{gathered}
$$

Determine Ic1

$$
\begin{gathered}
\mathrm{I}_{\mathrm{C} 1}=\mathrm{C}_{1} \mathrm{~d} \mathrm{~V}_{\mathrm{C}} / \mathrm{dt} \\
\mathrm{I}_{\mathrm{C} 1}=\mathrm{C}_{1} \mathrm{~d}\left(0-\mathrm{V}_{\text {out }}\right) / \mathrm{dt} \\
\mathrm{I}_{\mathrm{C} 1}=-\mathrm{C}_{1} \mathrm{dV}_{\text {out }} / \mathrm{dt}
\end{gathered}
$$

Since R_{1} and C_{1} are in series (no current should flow into pin 2 of the op-amp),

$$
\begin{gathered}
\mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{R} 1} \\
-\mathrm{C}_{1} \mathrm{dV}_{\text {out }} / \mathrm{dt}=\mathrm{V}_{\mathrm{in}} / \mathrm{R}_{1}
\end{gathered}
$$

$$
d V_{\text {out }}=-1 /\left(R_{1} C_{1}\right) V_{\text {in }} d t
$$

$$
\int_{V_{\text {out }}(0)}^{V_{\text {out }}} d V_{\text {out }}=-1 /\left(R_{1} C_{1}\right) \int_{0}^{t} V_{\text {in }} d t
$$

Integrating and inserting limits,

$$
\begin{equation*}
\mathrm{V}_{\text {out }}=-1 /\left(\mathrm{R}_{1} \mathrm{C}_{1}\right) \int_{0}^{\mathrm{t}} \mathrm{~V}_{\text {in }} \mathrm{dt}+\mathrm{V}_{\text {out }}(0) \tag{1}
\end{equation*}
$$

Tada! So, there it is ... integration! Notice the negative sign preceding the integral. Hence the term, inverting integrator!

Component nominal values: $\mathrm{R}_{1}=500 \mathrm{k}=0.5 \times 10^{6} \Omega, \mathrm{C}_{1}=2 \times 10^{-6} \mathrm{C},\left(\mathrm{R}_{1} \mathrm{C}_{1}=1 \mathrm{~s}\right)$, $\mathrm{V}_{\text {out }}(0)=2.50 \mathrm{~V}$, and $\mathrm{V}_{\text {in }}=0.50 \mathrm{~V}$.

After integrating and inserting component values, the nominal output voltage is

$$
\begin{equation*}
V_{\text {out }}=(-0.50 \mathrm{~V} / \mathrm{s}) \mathrm{t}+2.50 \mathrm{~V} \tag{2}
\end{equation*}
$$

Data

$t(s)$	$V_{\text {out }}(V)$ Trial 1	$\mathrm{V}_{\text {out }}(\mathrm{V})$ Trial 2	$\mathrm{V}_{\text {out }}(\mathrm{V})$ Trial 3	$\mathrm{V}_{\text {out }}(\mathrm{V})$ Average
00.0	+2.50	+2.50	+2.50	+2.50
05.0	+0.62	+0.62	+0.59	+0.61
10.0	-1.98	-2.00	-1.96	-1.98
15.0	-4.38	-4.43	-4.46	-4.43

Table 1: Output voltage

Results

Using the above data, and using LinReg option on a TI-84 Plus calculator,

$$
\begin{equation*}
V_{\text {out }}=(-0.47 \mathrm{~V} / \mathrm{s}) \mathrm{t}+2.68 \mathrm{~V} \text { with } \mathrm{r}^{2}=0.996(\text { good fit! }) \tag{3}
\end{equation*}
$$

Conclusion

This circuit performed as expected!

Any questions/comments regarding this building block may be addressed to:
Michael Cimorosi
Physics Instructor (adjunct)
Division of Physics, Engineering, Mathematics, and Computer Science
Delaware State University
Dover, DE
Email: mcimorosi@desu.edu.

Components

Circuit designation	Description
$\mathrm{R}_{1 \mathrm{~A}}$	$1 \mathrm{M} \Omega=1000 \mathrm{k} \Omega=1000 \mathrm{k}$
$\mathrm{R}_{1 \mathrm{~B}}$	$1 \mathrm{M} \Omega=1000 \mathrm{k} \Omega=1000 \mathrm{k}$
$\mathrm{R}_{1}=\mathrm{R}_{1 \mathrm{~A}}\| \| \mathrm{R}_{1 \mathrm{~B}}$	$0.500 \mathrm{M} \Omega=500 \mathrm{k} \Omega=500 \mathrm{k}$ (measured within 1\%)
R_{2}	15 -turn 10-k potentiometer
R_{3}	15 -turn 10-k potentiometer
$\mathrm{C}_{1 \mathrm{~A}}$	$1 \mu \mathrm{~F}$ (Polyester film)
$\mathrm{C}_{1 \mathrm{~B}}$	$1 \mu \mathrm{~F}$ (Polyester film)
$\mathrm{C}_{1}=\mathrm{C}_{1 \mathrm{~A}}\| \| \mathrm{C}_{1 \mathrm{~B}}$	$2 \mu \mathrm{~F}$ (measured within 1\%)
OA_{1}	$\mu \mathrm{~A} 741$ Op Amp *(assumed ideal)- OPA140 better option
EMR_{1}	Electromagnetic relay
S_{1}	SPDT slide switch
V_{CC}	+9 V (measured within 5\%)
V_{EE}	-9 V (measured within 5\%)
V_{R}	9 V relay voltage (measured within 5\%)
$\mathrm{V}_{\text {in }}$	+0.50 V (adjusted)
$\mathrm{V}_{\text {out }}(0)$	+2.50 V (adjusted)

Miscellaneous Supplies

Item	Quantity
Fixed jumper wire kit	1
3-section breadboard	1
Digital multimeter	1
Timepiece	1
9-Volt batteries	2
1.5-Volt batteries	4
3-Volt battery case with leads	2
30-Volt (max) DC supply	1
Ti-84 Plus calculator	1
Magnet	1

