Home-Constructed, Building Block Op-Amp Circuits for Analog Computers

Inverting Integrator

Introduction

Assuming the reader to be familiar with basic DC electronic theory, breadboards, ideal opamp parameters, and a bit of calculus, the mission of this project is show him/her a circuit that performs integration! Below, is my home-constructed inverting integrator circuit. However, don't just take my word for it. Using this document as a guide, construct and test your own inverting integrator and see for yourself! Doing builds understanding! At the end of this document is a list of components and supplies used for this building block.

Figure 1: Inverting integrator diagram

Figure 2: Photograph of inverting integrator breadboard layout

To see how this circuit integrates, I begin with a set of general current-voltage equations:

$$I_R = V_R/R$$
,

where I_R is the current passing through the resistor.

Also,

$$I_C = dQ_C/dt = CdV_C/dt$$
,

where Ic is the rate at which charge is deposited/removed from the capacitor. It is **NOT** charge passing through the capacitor! That would be a bad thing!

Now, for a bit of op-amp circuit mathematics:

To start,

 $V_+ = V_- = 0$ (virtual ground at pin 2)

Determine I_{R1}:

$$I_{R1} = (V_{in} - 0)/R_1$$

 $I_{R1} = V_{in}/R_1$

Determine I_{C1}

$$I_{C1} = C_1 dV_C/dt$$
$$I_{C1} = C_1 d(0 - V_{out})/dt$$
$$I_{C1} = -C_1 dV_{out}/dt$$

Since R₁ and C₁ are in series (no current should flow into pin 2 of the op-amp),

 $I_{C1} = I_{R1}$ $-C_1 dV_{out}/dt = V_{in}/R_1$ $dV_{out} = -1/(R_1C_1)V_{in} dt$

$$\int_{V_{out}(0)}^{V_{out}} dV_{out} = -1/(R_1C_1) \int_0^t V_{in} dt$$

Integrating and inserting limits,

$$V_{out} = -1/(R_1 C_1) \int_{0}^{t} V_{in} dt + V_{out}(0)$$
 (1)

Tada! So, there it is ... integration! Notice the negative sign preceding the integral. Hence the term, inverting integrator!

Component nominal values: $R_1 = 500 \text{ k} = 0.5 \times 10^6 \Omega$, $C_1 = 2 \times 10^{-6} \text{ C}$, $(R_1C_1 = 1 \text{ s})$, $V_{out}(0) = 2.50 \text{ V}$, and $V_{in} = 0.50 \text{ V}$.

After integrating and inserting component values, the nominal output voltage is

$$V_{out} = (-0.50 \text{ V/s}) \text{ t} + 2.50 \text{ V}$$
 (2)

Data

t (s)	Vout (V) Trial 1	Vout (V) Trial 2	Vout (V) Trial 3	Vout (V) Average
00.0	+2.50	+2.50	+2.50	+2.50
05.0	+0.62	+0.62	+0.59	+0.61
10.0	-1.98	-2.00	-1.96	-1.98
15.0	-4.38	-4.43	-4.46	-4.43

Table 1: Output voltage

Results

Using the above data, and using LinReg option on a TI-84 Plus calculator,

$$V_{out} = (-0.47 \text{ V/s}) \text{ t} + 2.68 \text{ V} \text{ with } r^2 = 0.996 \text{ (good fit!)}$$
 (3)

Conclusion

This circuit performed as expected!

Any questions/comments regarding this building block may be addressed to:

Michael Cimorosi Physics Instructor (adjunct) Division of Physics, Engineering, Mathematics, and Computer Science Delaware State University Dover, DE Email: <u>mcimorosi@desu.edu</u>.

Components

Circuit designation	Description	
R _{1A}	$1 \text{ M}\Omega = 1000 \text{ k}\Omega = 1000 \text{ k}$	
R _{1B}	$1 \text{ M}\Omega = 1000 \text{ k}\Omega = 1000 \text{ k}$	
$R_1 = R_{1A} R_{1B}$	$0.500 \text{ M}\Omega = 500 \text{ k}\Omega = 500 \text{ k}$ (measured within 1%)	
R ₂	15-turn 10-k potentiometer	
R ₃	15-turn 10-k potentiometer	
C _{1A}	1 μF (Polyester film)	
C _{1B}	1 μF (Polyester film)	
$C_1 = C_{1A} C_{1B}$	2 μF (measured within 1%)	
0A1	μA741 Op Amp *(assumed ideal)- OPA140 better option	
EMR ₁	Electromagnetic relay	
S ₁	SPDT slide switch	
Vcc	+9 V (measured within 5%)	
VEE	–9 V (measured within 5%)	
VR	9 V relay voltage (measured within 5%)	
Vin	+0.50 V (adjusted)	
V _{out(} 0)	0) +2.50 V (adjusted)	

Miscellaneous Supplies

Item	Quantity
Fixed jumper wire kit	1
3-section breadboard	1
Digital multimeter	1
Timepiece	1
9-Volt batteries	2
1.5-Volt batteries	4
3-Volt battery case with leads	2
30-Volt (max) DC supply	1
Ti-84 Plus calculator	1
Magnet	1