Analog Computer Applications
 Just for fun STEM project
 Michael Cimorosi, Issue \#1, 18-MAY-2021
 (mcimorosi@desu.edu)

Babylonian Mathematics, Analog Computation, and Lunar Surface Impact Speed

1 Introduction

For this project, a combination of ancient mathematics and modern electronics will be used to estimate the impact speed of an object released from rest at various heights (not to exceed 6 meters) above the surface of the moon.

On page 4 , Square roots are displayed in table 1 and impact speeds are displayed in table 2.

2 Mathematical modeling

First, a brief outline of the Babylonian method to extract the non-negative square root of a number using three iterations:

Let $R^{2}=N$, such that $L<N<H$, where L is the perfect square just less than N, and H is the perfect square just greater than N .

Assume that R_{L} is the square root of L and R_{H} is the square root of H, then a $\mathrm{R}_{\mathrm{H}}=\mathrm{R}_{\mathrm{L}}+1$.
$1^{\text {st }}$ iteration:

$$
\mathrm{R}_{1}=\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{H}}\right) / 2=\left(\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{L}}+1\right) / 2=\mathrm{R}_{\mathrm{L}}+1 / 2
$$

$2^{\text {nd }}$ iteration:

$$
\mathrm{R}_{2}=\mathrm{N} / \mathrm{R}_{1}=\mathrm{N} /\left(\mathrm{R}_{\mathrm{L}}+1 / 2\right) .
$$

$3^{\text {rd }}$ iteration:

$$
\mathrm{R}_{3}=\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) / 2=\left[\mathrm{R}_{\mathrm{L}}+1 / 2+\mathrm{N} /\left(\mathrm{R}_{\mathrm{L}}+1 / 2\right)\right] / 2 .
$$

From elementary physics, $\mathrm{v}=\sqrt{ }(2 \mathrm{gh})$ (when drag is negligible), where $\mathrm{g}=$ $1.625 \mathrm{~m} / \mathrm{s}^{2}$ (value at the lunar surface) and $\mathrm{h}=\mathrm{N}$ (in meters).

Simplifying, $\mathrm{v}=\sqrt{ }\left(2 \times 1.625 \mathrm{~m} / \mathrm{s}^{2} \times \mathrm{N}\right) \cong 1.80 \times \mathrm{R}_{3}$.

3a Computer setup (patch cord version)

Figure 1: Computer setup

3b Computer setup (IC/discrete component version)

Figure 2: Basic breadboard layout

4 Results (rounded to two decimal places)

N	$\mathrm{R}_{3} \cong \sqrt{ }(\mathrm{~N})$ Babylonian method via analog computer	$\mathrm{R}_{3} \cong \sqrt{ }(\mathrm{~N})$ Babylonian method via hand-held calculator using formula	$\sqrt{ }(\mathrm{N})$ via $\sqrt{\text { key on hand- }}$ held calculator
$1.50\left(\mathrm{R}_{\mathrm{L}}=1\right)$	1.26	1.25	1.22
$2.50\left(\mathrm{R}_{\mathrm{L}}=1\right)$	1.59	1.58	1.58
$3.50\left(\mathrm{R}_{\mathrm{L}}=1\right)$	1.92	1.92	1.87
$4.50\left(\mathrm{R}_{\mathrm{L}}=2\right)$	2.15	2.15	2.12
$5.50\left(\mathrm{R}_{\mathrm{L}}=2\right)$	2.35	2.35	2.35
$6.50\left(\mathrm{R}_{\mathrm{L}}=2\right)$	2.56	2.55	2.55

Table 1: Square root comparisons

N is replaced with $\mathrm{h}(\mathrm{m})$	Estimated $\mathrm{v}(\mathrm{m} / \mathrm{s})$ at impact via analog computer	$\mathrm{v}(\mathrm{m} / \mathrm{s})$ at impact via physics formula	$\mid \mathrm{v}$ difference $(\mathrm{m} / \mathrm{s} \mid$
1.50	2.26	2.21	0.05
2.50	2.87	2.85	0.02
3.50	3.47	3.37	0.10
4.50	3.89	3.82	0.07
5.50	4.24	4.23	0.01
6.50	4.61	4.60	0.01

Table 2: Impact speed comparisons

Figure 3: Basic breadboard layout (top view)

Figure 4: Basic breadboard layout (side view)

