Analog Computer Applications Just for fun STEM project Michael Cimorosi, Issue #1, 18-MAY-2021 (<u>mcimorosi@desu.edu</u>)

Babylonian Mathematics, Analog Computation, and Lunar Surface Impact Speed

1 Introduction

For this project, a combination of ancient mathematics and modern electronics will be used to estimate the impact speed of an object released from rest at various heights (not to exceed 6 meters) above the surface of the moon.

On page 4, Square roots are displayed in table 1 and impact speeds are displayed in table 2.

2 Mathematical modeling

First, a brief outline of the Babylonian method to extract the non-negative square root of a number using three iterations:

Let $R^2 = N$, such that L < N < H, where L is the perfect square just less than N, and H is the perfect square just greater than N.

Assume that R_L is the square root of L and R_H is the square root of H, then a $R_H = R_L + 1$.

1 st iteration:	$R_1 = (R_L + R_H)/2 = (R_L + R_L + 1)/2 = R_L + 1/2.$
2 nd iteration:	$R_2 = N/R_1 = N/(R_L + 1/2).$
3 rd iteration:	$R_3 = (R_1 + R_2)/2 = [R_L + 1/2 + N/(R_L + 1/2)]/2.$

From elementary physics, $v = \sqrt{(2gh)}$ (when drag is negligible), where $g = 1.625 \text{ m/s}^2$ (value at the lunar surface) and h = N (in meters).

Simplifying, $v = \sqrt{(2 \times 1.625 \text{ m/s}^2 \times \text{N})} \approx 1.80 \times \text{R}_3$.

3a Computer setup (patch cord version)

Figure 1: Computer setup

3b Computer setup (IC/discrete component version)

Figure 2: Basic breadboard layout

4 Results (rounded to two decimal places)

N	$R_3 \cong \sqrt{(N)}$ Babylonian method via analog computer	$R_3 \cong \sqrt{(N)}$ Babylonian method via hand-held calculator using formula	√(N) via √ key on hand- held calculator
1.50 ($R_L = 1$)	1.26	1.25	1.22
2.50 ($R_L = 1$)	1.59	1.58	1.58
$3.50 (R_L = 1)$	1.92	1.92	1.87
4.50 ($R_L = 2$)	2.15	2.15	2.12
5.50 (R _L =2)	2.35	2.35	2.35
$6.50 (R_L = 2)$	2.56	2.55	2.55

Table 1: Square root comparisons

N is replaced with	Estimated v (m/s)	v (m/s) at impact	v difference (m/s
h (m)	at impact	via physics formula	
	via analog computer		
1.50	2.26	2.21	0.05
2.50	2.87	2.85	0.02
3.50	3.47	3.37	0.10
4.50	3.89	3.82	0.07
5.50	4.24	4.23	0.01
6.50	4.61	4.60	0.01

Table 2: Impact speed comparisons

Michael Cimorosi, Issue #1, 18-MAY-2021 <u>mcimorosi@desu.edu</u>

Figure 3: Basic breadboard layout (top view)

Figure 4: Basic breadboard layout (side view)